Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Aims.The goal of this project is to construct an estimator for the masses of supermassive black holes in active galactic nuclei (AGNs) based on the broad Hαemission line. Methods.We made use of published reverberation mapping data. We remeasured all Hαtime lags from the original data as we find that reverberation measurements are often improved by detrending the light curves. Results.We produced mass estimators that require only the Hαluminosity and the width of the Hαemission line as characterized by either the full width at half maximum or the line dispersion. Conclusions.It is possible, on the basis of a single spectrum covering the Hαemission line, to estimate the mass of the central supermassive black hole in AGNs with all three parameters believed to affect mass measurement – luminosity, line width, and Eddington ratio – taken into account. The typical formal accuracy in such estimates is of order 0.2–0.3 dex relative to the reverberation-based masses.more » « lessFree, publicly-accessible full text available April 1, 2026
-
We present new Very Large Telescope Interferometer (VLTI)/GRAVITY near-infrared interferometric measurements of the angular size of the innermost hot dust continuum for 14 type 1 active galactic nuclei (AGNs). The angular sizes are resolved on scales of ∼0.7 mas and the inferred ring radii range from 0.028 to 1.33 pc, comparable to those reported previously and a factor of 10−20 smaller than the mid-infrared sizes in the literature. Combining our new data with previously published values, we compiled a sample of 25 AGNs with bolometric luminosity ranging from 1042to 1047erg s−1, with which we studied the radius-luminosity (R − L) relation for the hot dust structure. Our interferometric measurements of radius are offset by a factor of 2 from the equivalent relation derived through reverberation mapping. Using a simple model to explore the dust structure’s geometry, we conclude that this offset can be explained if the 2 μm emitting surface has a concave shape. Our data show that the slope of the relation is in line with the canonicalR ∝ L0.5when using an appropriately non-linear correction for bolometric luminosity. In contrast, using optical luminosity or applying a constant bolometric correction to it results in a significant deviation in the slope, suggesting a potential luminosity dependence on the spectral energy distribution. Over four orders of magnitude in luminosity, the intrinsic scatter around theR − Lrelation is 0.2 dex, suggesting a tight correlation between the innermost hot dust structure size and the AGN luminosity.more » « less
-
By using the GRAVITY instrument with the near-infrared (NIR) Very Large Telescope Interferometer (VLTI), the structure of the broad (emission-)line region (BLR) in active galactic nuclei (AGNs) can be spatially resolved, allowing the central black hole (BH) mass to be determined. This work reports new NIR VLTI/GRAVITY interferometric spectra for four type 1 AGNs (Mrk 509, PDS 456, Mrk 1239, and IC 4329A) with resolved broad-line emission. Dynamical modelling of interferometric data constrains the BLR radius and central BH mass measurements for our targets and reveals outflow-dominated BLRs for Mrk 509 and PDS 456. We present an updated radius-luminosity (R-L) relation independent of that derived with reverberation mapping (RM) measurements using all the GRAVITY-observed AGNs. We find our R-L relation to be largely consistent with that derived from RM measurements except at high luminosity, where BLR radii seem to be smaller than predicted. This is consistent with RM-based claims that high Eddington ratio AGNs show consistently smaller BLR sizes. The BH masses of our targets are also consistent with the standardMBH-σ*relation. Model-independent photocentre fitting shows spatial offsets between the hot dust continuum and the BLR photocentres (ranging from ∼17 μas to 140 μas) that are generally perpendicular to the alignment of the red- and blueshifted BLR photocentres. These offsets are found to be related to the AGN luminosity and could be caused by asymmetricK-band emission of the hot dust, shifting the dust photocentre. We discuss various possible scenarios that can explain this phenomenon.more » « less
-
ABSTRACT The structure of the broad-line region (BLR) is an essential ingredient in the determination of active galactic nucleus (AGN) virial black hole masses, which in turn are important to study the role of black holes in galaxy evolution. Constraints on the BLR geometry and dynamics can be obtained from velocity-resolved studies using reverberation mapping data (i.e. monitoring data). However, monitoring data are observationally expensive and only available for a limited sample of AGNs, mostly confined to the local Universe. Here, we explore a new version of a Bayesian inference, physical model of the BLR that uses an individual spectrum and prior information on the BLR size from the radius–luminosity relation, to model the AGN BLR geometry and dynamics. We apply our model to a sample of 11 AGNs, which have been previously modelled using monitoring data. Our single-epoch BLR model is able to constrain some of the BLR parameters with inferred parameter values that agree within the uncertainties with those determined from the modelling of monitoring data. We find that our model is able to derive stronger constraints on the BLR for AGNs with broad emission lines that qualitatively have more substructure and more asymmetry, presumably as they contain more information to constrain the physical model. The performance of this model makes it a practical and cost-effective tool to determine some of the BLR properties of a large sample of low- and high-redshift AGNs, for which monitoring data are not available.more » « less
-
This work focuses on active galactic nuclei (AGNs) and on the relation between the sizes of the hot dust continuum and the broad-line region (BLR). We find that the continuum size measured using optical/near-infrared interferometry (OI) is roughly twice that measured by reverberation mapping (RM). Both OI and RM continuum sizes show a tight relation with the H β BLR size, with only an intrinsic scatter of 0.25 dex. The masses of supermassive black holes (BHs) can hence simply be derived from a dust size in combination with a broad line width and virial factor. Since the primary uncertainty of these BH masses comes from the virial factor, the accuracy of the continuum-based BH masses is close to those based on the RM measurement of the broad emission line. Moreover, the necessary continuum measurements can be obtained on a much shorter timescale than those required monitoring for RM, and they are also more time efficient than those needed to resolve the BLR with OI. The primary goal of this work is to demonstrate a measuring of the BH mass based on the dust-continuum size with our first calibration of the R BLR – R d relation. The current limitation and caveats are discussed in detail. Future GRAVITY observations are expected to improve the continuum-based method and have the potential of measuring BH masses for a large sample of AGNs in the low-redshift Universe.more » « less
-
ABSTRACT We broadly explore the effects of systematic errors on reverberation mapping lag uncertainty estimates from javelin and the interpolated cross-correlation function (ICCF) method. We focus on simulated light curves from random realizations of the light curves of five intensively monitored AGNs. Both methods generally work well even in the presence of systematic errors, although javelin generally provides better error estimates. Poorly estimated light-curve uncertainties have less effect on the ICCF method because, unlike javelin , it does not explicitly assume Gaussian statistics. Neither method is sensitive to changes in the stochastic process driving the continuum or the transfer function relating the line light curve to the continuum. The only systematic error we considered that causes significant problems is if the line light curve is not a smoothed and shifted version of the continuum light curve but instead contains some additional sources of variability.more » « less
-
null (Ed.)ABSTRACT We present the first intensive continuum reverberation mapping study of the high accretion-rate Seyfert galaxy Mrk 110. The source was monitored almost daily for more than 200 d with the Swift X-ray and ultraviolet (UV)/optical telescopes, supported by ground-based observations from Las Cumbres Observatory, the Liverpool Telescope, and the Zowada Observatory, thus extending the wavelength coverage to 9100 Å. Mrk 110 was found to be significantly variable at all wavebands. Analysis of the intraband lags reveals two different behaviours, depending on the time-scale. On time-scales shorter than 10 d the lags, relative to the shortest UV waveband (∼1928 Å), increase with increasing wavelength up to a maximum of ∼2 d lag for the longest waveband (∼9100 Å), consistent with the expectation from disc reverberation. On longer time-scales, however, the g-band lags the Swift BAT hard X-rays by ∼10 d, with the z-band lagging the g-band by a similar amount, which cannot be explained in terms of simple reprocessing from the accretion disc. We interpret this result as an interplay between the emission from the accretion disc and diffuse continuum radiation from the broad-line region.more » « less
An official website of the United States government
